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A few basic structures determine the behavior of a coupled map lattice
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The stability and formation of structures in lattices of diffusively coupled logistic maps are investigated for
high nonlinearity and medium and large coupling. Two stability statements are given that relate the presence of
the predominant attractors, i.e., cycles and quasiperiodic traveling waves, to the stability of a few simple
periodic structures. They are supported by strong numerical evidence. Furthermore, they are justified through
the description of some mechanisms that connect the formation of a stable structure to the cycles of the
uncoupled lattice. As an important consequence, for given parameter values, an approximate prediction of the
behavior of the lattice is allowedS1063-651X98)15402-§

PACS numbdss): 05.45+b, 05.50+q

[. INTRODUCTION bility of a structure is determined by the stability of its finest
patterns. These patterns belong to a set of a few “fundamen-

Coupled map lattices have recently been introduced atal cycles” with the property that any other cycle can be seen
simple models for the study of the dynamics of spatiallyas being composed of some of them. Each composed cycle is
extended systems witfinfinitely) many degrees of freedom. stable if all the component cycles are stable, and its stability
Such models, in spite of their simple form, can exhibit aregion approximately corresponds to the intersection of the
wide variety of complex behaviors. For this reason, they carstability regions of all the components.
represent an adequate tool to investigate the spatiotemporal |5 accordance with Ref5], we follow this simple idea: a
phenomena wh_|ch occur in the real world. The subject ISspatial structuréwave can be seen as the compositionDof
amply covered in the literaturd —4]. elementary structures whose stability somehow determines

Among others, a key open problem is to determine they, . of the whole structure. We will show that the occurrence
mechanisms b_y which _spathtem_poral structures are select% cycles and quasiperiodic traveling waves can be associ-
and then acquire physical significance. The question can bge

reformulated by asking which patterns can acquire stabilit Ated with the Stab'“ty. of a few basic cycles of length
and why those and not others. In the present paper we off etween 5 and 12, which represent the only wavelengths that

a contribution that we trust will help to tackle the problem. are allowed in the parameter region considered. The associa-

We consider logistic maps with diffusive coupling, tion is formalized b_y two stgbility statements: one for peripd
namely, the lattice ma@t‘,a (—1,)N—(=1,2)Y, defined 2, the other for period 4. With our knowledge of the stability

by regions of the basic cycles, the two statements have a re-
markable implication: the possibility of predicting most of
1 o € i} . the nonchaotic behavior of lattiqd).
xi =(1-ofi)+ 5 [Fxi)+ i)l (@) To predict in what sense? Given a lattice of shtelet us
consider any spatial structute cycle of period 2 or 4, or a
with periodic boundary condition& is the discrete time and duasiperiodic traveling wave of period 4omposed ofD
€<[0,1] is the coupling parameter. The logistic mégx), elementary waves. If it is stable, its stability region will be

which provides the local evolution, is expressed in the formincluded in a larger region which is determined by the pair
(N,D). It is this latter region that can be more or less accu-

f(x)=1—ax?, (2 rately predicted. Note that, substantially, it is the “basic”
wavelength N/D] that, independently ofl, determines the
with the nonlinearity parametex varying in (0,2]. parameter region where a structure may be stable.
We investigate latticél) for medium and large coupling In a sense, the stability statements given here extend an

and high nonlinearity, say=0.4 anda=1.6. In this param- analogous statement given in Rg5] to a wider parameter
eter region the asymptotic dynamics, often generically refregion and to a wider class of structures. There are, however,
ferred to as pattern selection with suppression of chaos, isome differences that appear worthy of note. In Ref.the
mainly due to cycles and quasiperiodic traveling waves ofesult was quite precise, but relevant only to cycles of period
period 4. These attractors are largely predominant for larg@. Unfortunately, these cycles govern only a small percent-
N, sayN=100. For smalleiN cycles of period 2 are also age of the dynamics that occurs fe+ 0.4, and certainly not
quite relevant to the dynamics. We, therefore, take into acthe most interesting part. On the other hand, the results ob-
count cycles of periods 2 and 4 and traveling waves of periodiained here, though rougher, concern most of the dynamics
4. of major interest fore=0.4. In our opinion, such greater

Very recently an interesting numerical resi8{ was ob-  generality, with the simultaneous treatment of cycles and
tained which concerns the structures of time period 2 foruasiperiodic traveling waves, constitutes the interesting as-
small coupling €<0.4). That is, it was shown that the sta- pect of this paper.
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Il. PRELIMINARY REMARKS AND NOTATIONS
0.8
Numerical investigation shows that in the parameter re- /\ [\ [\ /\ /\ /\ /\ [\

gion under consideration, nonchaotic attractors, i.e., cycles

and tori, are clearly predominant. Most periodic behavior is AT
determined byp-periodic cycles with a particular character-

istic: they are nodes of heteroclinic cyclg4]. This is an 0

I(Z)

invariant one-dimensional manifold formed lpy (or p/2)

curves and including two distinct families & cycles of -0.4

period p, the ones being stabléodes, the others being 0 50 0
unstable(saddles. The manifold is the union of the gN site 4

points of the cycles with the unstable manifolds of the

saddles. FIG. 1. Spatial structure associated with a traveling wave for

A heteroclinic cycle can also be regarded as a phaséN=64,a=1.7, ande=0.55. In this case the numbEr of domains
locked torus with rotation numbev=0 (or w=1/2). Sucha is 8.
torus has the special property that nodes and saddles have an
eigenvalue of their stability matrix which remains very closethe attractor is a cycle or a traveling wave, it determines its
to one as the parameters are varied. For the nodes this irgeriodp and its number of domaind.
plies attractivity with relaxation times much longer, some-It should be pointed out that a possible reason, perhaps the
times very much longer, than those of a normal cycle. The@nly one, why an attractor may be incorrectly classified is
knowledge of the existence of cycles with this peculiarity isdue to the well-known phenomenon of supertransients. Al-
of fundamental importance for the definition of the overall though our computations take into account the possible oc-
behavior of Eq(1). However, for the sake of simplicity, we currence of such a phenomenon, we cannot exclude the pos-
will not distinguish between normal cycles and cycles lo-sibility of a nonchaotic attractofmost likely a cyclg being
cated on a heteroclinic cyc[é]. erroneously classified as chaotic. However, we can state that

Most tori are two-tori, and most of them ageasiperiodic ~ attractors are never erroneously classified as cycles or trav-
traveling waveg?2]. These are characterized by a very small€ling waves. This is of fundamental importance for the reli-
rotation numbekin our experiments of the order of 16 or  ability of our results.
smalle). Consequently, the associated pattern moves quitS8ome notations are now needed. Let the nonllnearlty param-
slowly in space. Henceforth, quasiperiodic traveling wavesgtera be fixed, and equal ta. We denote by=f(z‘ ,),
will be simply referred to as traveling waves. i=0,...,2—1, the points of the cycle of the Iog|st|c map of

A two-torus consists o distinct closed curves which are period 2 originating from the fixed pomizO As is well
invariant under ‘Ps,a)p- For this reason one can say that aknown, all these cycles are unstable for the values lbging
two-torus, like a cycle, has a perigd In all our experiments taken into account. For the sake of argument, let us suppose
we found p=2%, with k=1 in the case of a cycle ankl thatz0 min; z¥.

=2 in the case of a traveling wave. A lattice point of the form
A trajectory point of Eqg.(1) can be seen as a spatial
structure(or wave that may evolve with time. For the attrac- (zC Ze, ,...,zEN), kie{0,1,..}, ¢ e{0,...2i—-1} (3
N

tors we are interested in, that is, cycles and quasiperiodic
traveling waves, the spatial structure retains its form
Clearly, whereas for a cycle it is fixed unde(b!a)p for a
traveling wave it translates very slowly, recovering its initial
position, though not exactly, aftgr/w iterations.

A spatial structure is significantly characterized by two
numbers: its siz& and its number of domairi3. The latter
can be defined as the number of times the spatial wave
crosses the ling=z{ from below,z{ being the fixed point of
the logistic mapD can also be regarded as the number of
elementary waves that compose the structses Fig. 1

is a point of an unstable cycle of periog=2% k
max <;<nK; , for the uncoupled map>Oa
We will be interested, in particular, in cycles of periofl 2
in which all thek;'s are equal tk, except at most a few that
are equal to 0. This allows us to use the simpler notation

(C1Ca...CN)k (4)

with c; €{0,0,....%—1}, and Odenoting the fixed point’.
Here we consider only attractors of periods 2 and 4Notatlon (4) can be further simplified in the presenceiof

which govern most of the dynamics of lattiéB). Note that, ‘consecutivec;'s equal to each other by rezpresentmg such a
as sizeN becomes larger and larger, the relevance of peno&Ubsequence by} . So, for instance, (t1%); corresponds
2 gradually decreases until it vanishes. Hence, for laige to (0000a1); and (G'3%), to (00003333).
period 4 is largely predominant. As eis increased from zero, every cycle of foB) is the
Most of our results were obtained by means of a compuorigin of a one-dimensional continuum of cycles@iJ S that
tational code, mainly based on the calculation of theretain the same spatial structure. For this reason, we continue
Liapunov exponents, which is able to define the nature of théo refer to it by the same notation as for the originating cycle.
attractor onto which a trajectory relaxes. In particular, thisAn efficient numerical tool for the investigation of the con-
code distinguishes between normal cycles and cycles belonginuation of a cycle ag varies is the Newton method. We
ing to a heteroclinic cycle, between two- and three-tori anduse it mainly to find out whether or not a cycle acquires
between normal tori and traveling waves. Furthermore, whestability, and when and how it comes to an end.
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FIG. 2. Stability regions R(A,), m
=5,...,10. Continuous lines mark the boundary of
R(Ag), broken lines that ofR(As) and R(Ag),

dotted lines that ofR(A;), and dotted-broken
lines that of R(Ag) and R(A19). The symbols

A, are placed inside the associated region near
the boundary curves.

lll. BASIC CYCLES

As stated in Sec. |, we set out to show that a nonchaotic

structure of any siz8&l, be it a cycle or a traveling wave, can
be regarded as the composition Df elementary waves

whose stability determines that of the whole structure. The

cycles of the form (lL™'), are the simplest structures of

period X, present fore=0, that one can associate with an
elementary wave of size. For this reason, we first deter-

mined the stability of the cycles of periods 2 and 4 of this
type. We found that only a few of them, all of size<bn

B,={(01%),,(01%),},
Bg={(01%)2,(0°1%),},
Bo={(0"1°),,(0°1%),},
B1=1{(0%1%),,(0713),},
B11={(0°1%),,(0%17),,(071%),,(0°1%),},

B1,={(0%1%),,(0*18),,(0%1%),,(0%13),}.

<12, succeed in acquiring stability in the parameter region
under consideration. In addition, in the case of period 2, we

found that some cycles with one or two coordinates equal to Henceforth, a cycle belonging ®y, (Byy) will be generi-

Z3 also become stable.
The cycles that become stable are listed below grouped i
setsA,, (period 2 andB,, (period 4 according to their size:

As={(0°1%),},
As={(0*12),,(0%1%),,(00%012),},
Ar={(0*1%)1,(0%01%)},
Ag={(0"1%)1,(0°1%)},
Ag={(0°1%)1,(0°1%),(0%01%),},
Ag={(0°1%);,(00%01%),},
Bs={(0%1%),},

Bs={(0%1?),,(0%13),},

cally denoted by A, (B,). Furthermore, letR(A.)
ER(Bm)] represent the region, in the parameter plan@),
where a stable cycle of the map]', exists, which is the
continuation of a cycled,, (B,,). For eachm and any given
point (e,a) belonging toR(A,) [R(By)], just one A,
(B,) is stable.

The stability regionskR(A,,) and R(B,,) are shown in
Figs. 2 and 3. It should be noted that, also in the case where
A (By,) consists of more than one cyclB(A) [R(Bm)]
is a connected set. This is because, in most cases, a stable
cycle A, (By) is involved in a heteroclinic cyclé4] to-
gether with another unstablé,, (5,,), and a typical bifur-
cation phenomenon of a heteroclinic cycle is the exchange of
stability between the cycles lying on it.

In what follows, the interval ok that corresponds to the
intersection of the stability regioR(A,,) with the line a
=a will be denoted by &>, a2), with the assumption?,
=1 in the case wher&(A,,) extends toe=1. Analogously,
(8%, 82) will represent the intersection of the same line with
R(B,). From Fig. 2 it is clear that, for ang, we have

FIG. 3. Stability regionsk(B,,), m=5,...,12.

Continuous lines mark the boundary &f(Bs)
and R(Bgy), broken lines that ofR(Bg) and

R(B1g), dotted lines that ofR(B;) andR(B1y),
and dotted-broken lines that oR(Bg) and
R(B1). Here, differently from Fig. 2, one sym-

bol B,, is centered inside the corresponding re-
gion.
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—_
o

~

™

odic traveling waves o@’:'faof period 4 withD domains that

~ are stable irP. Denote by 5, 83) the minimum interval of
FIG. 4.N=27,a=1.7(a); a=2 (b). Number of cycles of period ¢ that contains all the stability ranges of the attractors of

2(dot_ted lines, cycles_ of perlqd 4broken I|r_1e$, and quasiperiodic Eﬁo- Then (B%),ﬂ%) is entirely or partially included in

traveling waves(continuous lines as functions ofe for each al- (ﬂmvﬁﬁq)l with ﬁ]b>ﬂ#v if s=0, while it is entirely included

lowed D, which is shown near the corresponding curves.18° . 15 . oo B .
initial transients were discarded fex0.6, and 3< 10° for largere. in (B Bmy.1) if s>0. Moreover, if%y 5 _; is not empty, the

TW’s in the vertical axis label means traveling waves. interval (35,B8%5) precedes 85_;,85_1), which is to say
that B <5, and Bp<Bp_ .
at<at., anda?<a?,,. Figure 3 clearly shows that per- ~ We have ample data to support these statements. In order
fectly similar relations hold for thegl’s and theg2’s as @ produce our data we chose several pahisa), with N
well. from 15 up to 400, and for each pair we used a grid dor
€[0.3,1] with Ae=0.01. For each pointg,a) we generated
100 trajectories, starting from randomly chosen initial points,
IV. STABILITY STATEMENTS and determined the corresponding attractors. In particular,
Our major findings can be formalized in twatability ~ We Selected the cycles of periods 2 and 4, and the traveling
statementsone for period 2, the other for period 4. They are Waves of period 4. The data relative to eadt,d) were
based on the conjecture that any nonchaotic attractdI';téf collected and visualized in a picture showing, as a function

with D domains, originates, in some way, from a cycle of©f € and for eactD, the number of the cycles of period 2,
at of the cycles of period 4, and that of the traveling waves.

@’g"a with the same spatial structure, and which is compose@\} int out that ing to the fact that. i fing th
of r +s=D elementary waves, of lengthm ands of length € point out that, owing 1o the tact that, in counting the
attractors, only mistakes of underestimation were possible,

m-+1. By identifying the component waves with the CyCIesthe resultant graphs are certainly qualitatively correct. Quan-
Am Or By depending on the period, we find that the Stabilitytitativel S egkinIO they are su)k/)gtantiall c>c/>rrect a.s is in
of the entire structure is determined by that of the compo- y speaking, they y '

. . most cases evident if one adds up the number of the cycles
nents. Note that, giveN andD, one tern of integersn,r,s)

exists such tharm+s(m+1)=N, r+s=D, r>0, s=0

[i.e., m=[N/D], s=N—mD, r=D-s]. 4 100
The stability statements are formulated with reference to ~
the parameter regioR={0.4<¢<0.9, 1.6sa<2}. The pa- 2
rametere is assumed<0.9 because for larger values cycles 3 4,1
may take place whose numbers of domains do not seem to &
follow any rule. “g 40
The stability statement for period 2 is the following: Let ¥
2\,p be the set of all the cycles @:'Eof period 2 withD g 20
domains that are stable in the regiBnDenote by @3, a3) &

the minimum interval ofe that contains all the stability
ranges of the cycles oky . Consider the ternng,r,s)
defined as above by andD. Then (o3,3) is included in FIG. 6. N=64,a=1.7. As in Fig. 4.
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FIG. 7. N=100,a=1.6. As in Fig. 4. FIG. 9. N=400,a=1.6. As in Fig. 8.
and that of the traveling waves, and compares the result witigl 32) follow one another on the axis with decreasing
the number of initial conditions. _ D. Furthermore, in generaky comes slightly afteB3.
Some of these pictures, corresponding\te 27, 42, 64, The sequence of Figs. 4—9 provides a fairly good descrip-

100, 200, and 400, respectively, are shown in Figs. 4-9qn of the nonchaotic behavior of latti¢g) in the parameter
When compared with Figs. 2 and 3, they provide strong eVizegion under consideration. It shows, in particular, the phe-
dence of the validity of the statements. _ nomenon of “pattern selection with suppression of chaos”
The stability statements settle some important poi@s: 2 6], In this regard, let us stress the points that appear of
Only a few wavelengthsn, 5<m<=12, are allowed(b) A o5t interest. Cycles and traveling waves of period 4 are by
wavelengthm can occur singly or coupled witm+1; while 5 the most important attractors. Their role in the dynamics
it occurs singly only ifN=mD, it occurs coupled whenever s ajready rather significant for smadl, but it becomes more
N=rm+s(m+1), withr+s=D. (c) Agivenmor a given  5n4 more relevant ds increases. In contrast, the importance
pair (m,m+1) cannot occur everywhere, but only ifuf- - of the cycles of period 2 diminishes rapidly, practically van-
ficiently) well-defined parameter region, which depends ofjghing asN approaches 100. However, if one considers lat-
the tern (n,r,s) and on the periodd) Points(a) and(c) are  {ices of small size, when very few numbebsare allowed
the consequence of a strict connection with the stability ofyq there are wide intervals efin which neither cycles nor
some simple cycles whose sizes correspond exactly to theayeling waves of period 4 are present, the prevalent dynam-
allowed wavelengths. _ _ ics is ruled by cycles of period 2 lying on a heteroclinic
Not only do these results explain some previously ob-cycle,
served fact$2], they also contain a very important element: ~ oy pictures render an account of the behavior of most of
the possibility of predicting, although approximately, the pa-the trajectories we considered. It must be said that the re-
rameter region where a cycle or a quasiperiodic travelingnaining trajectories approach different attractors, including
wave with a given spatial structure may be attracting. Fofeteroclinic cycles and traveling waves of period 8 or larger,
vals (83,83), can be defined more or less accurately, de-
pending on the case, by means of the intervals, %) and
(B, B2), which are known from Figs. 2 and 3. In fact, con- V. FORMATION OF STABLE STRUCTURES

cerning period 2, gaché divides the interval ‘(“rln’a_#ﬂ) In order to provide a heuristic justification for the stability
into parts that are inversely proportional, with a fair degreestatements, we made a number of numerical experiments
of accuracy, ta ands. The result for period 4 is somewhat 4imeq at explaining the mechanisms of formation of stable
more approximate: the inverse proportionality of the parts iNcycles and traveling waves. More precisely, we tried to con-
which Bg divides (81, Bm.1) is only very rough. In any firm the following two hypothesega) any attractor o
case, the intervals ap,ap), as well as the intervals (3£ ) is connected, through a more or less complicated
sequence of bifurcations, with some cycle@f‘a—of period

2 (period 4; and (b) this cycle can be suitably decomposed
into D simpler structures corresponding @ cycles A,
(By) if N=mD, tor cycles A, (B,) ands=D~—r cycles

Ami1 (Bme1) if N=rm-+s(m+1). Let us denote such a
r,s

cycle by Ay% (BNDb)-

In the case of cycles of period 2, both hypotheses seem to
hold for almost all choices of initial conditions and param-
eters. In fact, in all but one of the 15 cases we examined, we
were able to connect the considered cycleXgf, with a
cycle AN -

Regarding cycles of period 4, things are more compli-

FIG. 8. N=200,a=1.6. As in Fig. 4, but with 1®discarded cated and cannot be defined as in the case of period 2. For
initial transients fore<0.6, and 5< 10° for largere. parameter values that are not too lafgeughly fora<1.8
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and eéso.S), there is numerical evidence that almost all and large coupling. For such parameter values the dynamics
cycles szﬁ,o can be continued backwards up &=0, Iis largely governed by cycles and traveling waves of period 4
where they assume the form ofﬁg . For larger parameter and, in lattices of small sizN, by cycles of period 2 as well.
values, it is practically impossible in most cases to follow theWe have investigated these attractors and have summarized
cycle up toe=0. When the attempt is successful, the struc-our findings in two stability statements.
ture of the cycle ak=0 turns out to be more complex than  In particular, we have found that, regardlessNof the
that of aB,\ﬂ;é. In any case, this can again be seen as stability of a spatial structurécycle or traveling waveis
combination ofD simpler structures corresponding to cyclesassociated with that of a few basic cycldg, or B, of small
of form (3) which are only in part identifiable with cycld%,,  sizem. Such an association is based on the decomposition of
or Byi1- the structure in terms of elementary waves of sizandm
The possibility of connecting a traveling wave with a +1. By identifying these waves with the,'s or B,’s, it is
cycle By '3 is subordinate to the possibility of explaining the possible, thanks to the fact that their stability regions are
appearance of the traveling wave through a bifurcation from{numerically known, to deduce approximately where a cycle
some stable cycle obga—. In this regard, our experiments or traveling wave with a given spatial structure may be at-
show that a mechanism sometimes occurs which fulfills theracting.
former possibility. In addition to this, we have demonstrated that almost all
The mechanism is as follows: Asincreases from zero, the cycles of period 2 and also, for suitable parameter values,
the continuation of &y '3 acquires stability, and then it be- most of the cycles of period 4, originate from cycles of the
comes involved as a node in a phase-locked torus with @ncoupled lattice, which are composed precisely bfocks
rotation numbemw=0. The phase-locked torus is formed by 4. (or 53,) ands blocks A, (or By ). Furthermore, in
the unstable manifold of a saddle that joins the node. Thgome cases a traveling wave is also directly connected with a
torus is not “visible” because the attractor is the nodee If similarly structured cycle ofDQa—- This connection of both

increases again, the node may disappear by collapsing wit . : )
the saddle. When this happens, it makes the torus appes cles and traveling waves with the cycles of the lattice at

with w very close to zero. Because remains very small as €=0 and with the basic cyc_:leﬁm ar_1d B SEems very im-
e is increased further, a traveling wave has occurred. portant. On the one hand, in fact, it provides a justification

Such a mechanism for the formation of a traveling wavef©or the stability statements; on the o_ther hand, it suggests a
was carefully checked in a few cases, for instance,Nor possible starting point for a theoretical approach aimed at

—45,D=6, anda=1.60 andN=64, D=8, anda=1.69. It  NgOrous results.

must be said, however, that in the great majority of cases the

appearance of a traveling wave is not directly related to the

disappearancéor the loss of stability of a stable cycle. In ACKNOWLEDGMENTS
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The results of this paper concern the behavior of a

coupled map latticg1) for high nonlinearity and medium
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