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A few basic structures determine the behavior of a coupled map lattice

Valter Franceschini and Cecilia Vernia
Dipartimento di Matematica Pura ed Applicata, Universita` di Modena, via Campi 213/B, 41100 Modena, Italy

~Received 10 February 1997; revised manuscript received 29 September 1997!

The stability and formation of structures in lattices of diffusively coupled logistic maps are investigated for
high nonlinearity and medium and large coupling. Two stability statements are given that relate the presence of
the predominant attractors, i.e., cycles and quasiperiodic traveling waves, to the stability of a few simple
periodic structures. They are supported by strong numerical evidence. Furthermore, they are justified through
the description of some mechanisms that connect the formation of a stable structure to the cycles of the
uncoupled lattice. As an important consequence, for given parameter values, an approximate prediction of the
behavior of the lattice is allowed.@S1063-651X~98!15402-8#

PACS number~s!: 05.45.1b, 05.50.1q
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I. INTRODUCTION

Coupled map lattices have recently been introduced
simple models for the study of the dynamics of spatia
extended systems with~infinitely! many degrees of freedom
Such models, in spite of their simple form, can exhibit
wide variety of complex behaviors. For this reason, they
represent an adequate tool to investigate the spatiotemp
phenomena which occur in the real world. The subjec
amply covered in the literature@1–4#.

Among others, a key open problem is to determine
mechanisms by which spatiotemporal structures are sele
and then acquire physical significance. The question can
reformulated by asking which patterns can acquire stab
and why those and not others. In the present paper we o
a contribution that we trust will help to tackle the problem

We consider logistic maps with diffusive coupling
namely, the lattice mapFe,a

N :(21,1)N→(21,1)N, defined
by

xi
k115~12e! f ~xi

k!1
e

2
@ f ~xi 21

k !1 f ~xi 11
k !#, ~1!

with periodic boundary conditions.k is the discrete time and
eP@0,1# is the coupling parameter. The logistic mapf (x),
which provides the local evolution, is expressed in the fo

f ~x!512ax2, ~2!

with the nonlinearity parametera varying in ~0,2#.
We investigate lattice~1! for medium and large coupling

and high nonlinearity, saye>0.4 anda>1.6. In this param-
eter region the asymptotic dynamics, often generically
ferred to as pattern selection with suppression of chaos
mainly due to cycles and quasiperiodic traveling waves
period 4. These attractors are largely predominant for la
N, say N>100. For smallerN cycles of period 2 are also
quite relevant to the dynamics. We, therefore, take into
count cycles of periods 2 and 4 and traveling waves of pe
4.

Very recently an interesting numerical result@5# was ob-
tained which concerns the structures of time period 2
small coupling (e,0.4). That is, it was shown that the st
571063-651X/98/57~3!/2757~6!/$15.00
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bility of a structure is determined by the stability of its fine
patterns. These patterns belong to a set of a few ‘‘fundam
tal cycles’’ with the property that any other cycle can be se
as being composed of some of them. Each composed cyc
stable if all the component cycles are stable, and its stab
region approximately corresponds to the intersection of
stability regions of all the components.

In accordance with Ref.@5#, we follow this simple idea: a
spatial structure~wave! can be seen as the composition ofD
elementary structures whose stability somehow determ
that of the whole structure. We will show that the occurren
of cycles and quasiperiodic traveling waves can be ass
ated with the stability of a few basic cycles of lengthm
between 5 and 12, which represent the only wavelengths
are allowed in the parameter region considered. The asso
tion is formalized by two stability statements: one for peri
2, the other for period 4. With our knowledge of the stabil
regions of the basic cycles, the two statements have a
markable implication: the possibility of predicting most
the nonchaotic behavior of lattice~1!.

To predict in what sense? Given a lattice of sizeN, let us
consider any spatial structure~a cycle of period 2 or 4, or a
quasiperiodic traveling wave of period 4! composed ofD
elementary waves. If it is stable, its stability region will b
included in a larger region which is determined by the p
(N,D). It is this latter region that can be more or less acc
rately predicted. Note that, substantially, it is the ‘‘basic
wavelength@N/D# that, independently ofN, determines the
parameter region where a structure may be stable.

In a sense, the stability statements given here extend
analogous statement given in Ref.@5# to a wider parameter
region and to a wider class of structures. There are, howe
some differences that appear worthy of note. In Ref.@5# the
result was quite precise, but relevant only to cycles of per
2. Unfortunately, these cycles govern only a small perce
age of the dynamics that occurs fore,0.4, and certainly not
the most interesting part. On the other hand, the results
tained here, though rougher, concern most of the dynam
of major interest fore>0.4. In our opinion, such greate
generality, with the simultaneous treatment of cycles a
quasiperiodic traveling waves, constitutes the interesting
pect of this paper.
2757 © 1998 The American Physical Society
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II. PRELIMINARY REMARKS AND NOTATIONS

Numerical investigation shows that in the parameter
gion under consideration, nonchaotic attractors, i.e., cy
and tori, are clearly predominant. Most periodic behavio
determined byp-periodic cycles with a particular characte
istic: they are nodes of aheteroclinic cycle@4#. This is an
invariant one-dimensional manifold formed byp ~or p/2!
curves and including two distinct families ofN cycles of
period p, the ones being stable~nodes!, the others being
unstable~saddles!. The manifold is the union of the 2pN
points of the cycles with the unstable manifolds of t
saddles.

A heteroclinic cycle can also be regarded as a pha
locked torus with rotation numberw50 ~or w51/2!. Such a
torus has the special property that nodes and saddles ha
eigenvalue of their stability matrix which remains very clo
to one as the parameters are varied. For the nodes this
plies attractivity with relaxation times much longer, som
times very much longer, than those of a normal cycle. T
knowledge of the existence of cycles with this peculiarity
of fundamental importance for the definition of the over
behavior of Eq.~1!. However, for the sake of simplicity, we
will not distinguish between normal cycles and cycles
cated on a heteroclinic cycle@6#.

Most tori are two-tori, and most of them arequasiperiodic
traveling waves@2#. These are characterized by a very sm
rotation number~in our experiments of the order of 1024 or
smaller!. Consequently, the associated pattern moves q
slowly in space. Henceforth, quasiperiodic traveling wav
will be simply referred to as traveling waves.

A two-torus consists ofp distinct closed curves which ar
invariant under (Fe,a

N )p. For this reason one can say that
two-torus, like a cycle, has a periodp. In all our experiments
we found p52k, with k>1 in the case of a cycle andk
>2 in the case of a traveling wave.

A trajectory point of Eq.~1! can be seen as a spati
structure~or wave! that may evolve with time. For the attrac
tors we are interested in, that is, cycles and quasiperio
traveling waves, the spatial structure retains its for
Clearly, whereas for a cycle it is fixed under (Fe,a

N )p, for a
traveling wave it translates very slowly, recovering its init
position, though not exactly, afterp/w iterations.

A spatial structure is significantly characterized by tw
numbers: its sizeN and its number of domainsD. The latter
can be defined as the number of times the spatial w
crosses the linex5z0

0 from below,z0
0 being the fixed point of

the logistic map.D can also be regarded as the number
elementary waves that compose the structure~see Fig. 1!.

Here we consider only attractors of periods 2 and
which govern most of the dynamics of lattice~1!. Note that,
as sizeN becomes larger and larger, the relevance of per
2 gradually decreases until it vanishes. Hence, for largeN,
period 4 is largely predominant.

Most of our results were obtained by means of a com
tational code, mainly based on the calculation of t
Liapunov exponents, which is able to define the nature of
attractor onto which a trajectory relaxes. In particular, t
code distinguishes between normal cycles and cycles bel
ing to a heteroclinic cycle, between two- and three-tori a
between normal tori and traveling waves. Furthermore, w
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the attractor is a cycle or a traveling wave, it determines
periodp and its number of domainsD.
It should be pointed out that a possible reason, perhaps
only one, why an attractor may be incorrectly classified
due to the well-known phenomenon of supertransients.
though our computations take into account the possible
currence of such a phenomenon, we cannot exclude the
sibility of a nonchaotic attractor~most likely a cycle! being
erroneously classified as chaotic. However, we can state
attractors are never erroneously classified as cycles or t
eling waves. This is of fundamental importance for the re
ability of our results.
Some notations are now needed. Let the nonlinearity par
etera be fixed, and equal toā. We denote byzi

k5 f (zi 21
k ),

i 50,...,2k21, the points of the cycle of the logistic map o
period 2k originating from the fixed pointz0

0. As is well
known, all these cycles are unstable for the values ofa being
taken into account. For the sake of argument, let us supp
that z0

k5mini zi
k .

A lattice point of the form

~zc1

k1,zc2

k2,...,zcN

kN!, kjP$0,1,...%, cjP$0,...,2kj21% ~3!

is a point of an unstable cycle of periodp52k, k
5max1<j<Nkj , for the uncoupled mapF0,ā

N .
We will be interested, in particular, in cycles of period 2k

in which all thekj ’s are equal tok, except at most a few tha
are equal to 0. This allows us to use the simpler notation

~c1c2 ...cN!k , ~4!

with cjP$0̄,0,...,2k21%, and 0̄denoting the fixed pointz0
0.

Notation ~4! can be further simplified in the presence ofi
consecutivecj ’s equal to each other by representing such
subsequence bycj

i . So, for instance, (040̄12)1 corresponds
to (00000̄11)1 and (0434)2 to (00003333)2 .

As e is increased from zero, every cycle of form~3! is the
origin of a one-dimensional continuum of cycles ofFe, ā

N that
retain the same spatial structure. For this reason, we cont
to refer to it by the same notation as for the originating cyc
An efficient numerical tool for the investigation of the co
tinuation of a cycle ase varies is the Newton method. W
use it mainly to find out whether or not a cycle acquir
stability, and when and how it comes to an end.

FIG. 1. Spatial structure associated with a traveling wave
N564, a51.7, ande50.55. In this case the numberD of domains
is 8.
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FIG. 2. Stability regions R(Am), m
55,...,10. Continuous lines mark the boundary
R(A6), broken lines that ofR(A5) andR(A9),
dotted lines that ofR(A7), and dotted-broken
lines that ofR(A8) andR(A10). The symbols
Am are placed inside the associated region n
the boundary curves.
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III. BASIC CYCLES

As stated in Sec. I, we set out to show that a noncha
structure of any sizeN, be it a cycle or a traveling wave, ca
be regarded as the composition ofD elementary waves
whose stability determines that of the whole structure. T
cycles of the form (0i1m2 i)k are the simplest structures o
period 2k, present fore50, that one can associate with a
elementary wave of sizem. For this reason, we first deter
mined the stability of the cycles of periods 2 and 4 of th
type. We found that only a few of them, all of size 5<m
<12, succeed in acquiring stability in the parameter reg
under consideration. In addition, in the case of period 2,
found that some cycles with one or two coordinates equa
z0

0 also become stable.
The cycles that become stable are listed below groupe

setsAm ~period 2! andBm ~period 4! according to their size:

A5[$~0312!1%,

A6[$~0412!1 ,~0313!1 ,~ 0̄020̄12!1%,

A7[$~0413!1 ,~030̄13!1%,

A8[$~0414!1 ,~0513!1%,

A9[$~0613!1 ,~0514!1 ,~040̄14!1%,

A10[$~0614!1 ,~ 0̄040̄14!1%,

B5[$~0312!2%,

B6[$~0412!2 ,~0313!2%,
ic

e

n
e
to

in

B7[$~0314!2 ,~0413!2%,

B8[$~0414!2 ,~0513!2%,

B9[$~0415!2 ,~0514!2%,

B10[$~0614!2 ,~0713!2%,

B11[$~0318!2 ,~0417!2 ,~0714!2 ,~0813!2%,

B12[$~0319!2 ,~0418!2 ,~0814!2 ,~0913!2%.

Henceforth, a cycle belonging toAm (Bm) will be generi-
cally denoted byAm (Bm). Furthermore, letR(Am)
@R(Bm)# represent the region, in the parameter plane (e,a),
where a stable cycle of the mapFe,a

m exists, which is the
continuation of a cycleAm (Bm). For eachm and any given
point (e,a) belonging toR(Am) @R(Bm)#, just oneAm
(Bm) is stable.

The stability regionsR(Am) andR(Bm) are shown in
Figs. 2 and 3. It should be noted that, also in the case wh
Am (Bm) consists of more than one cycle,R(Am) @R(Bm)#
is a connected set. This is because, in most cases, a s
cycle Am (Bm) is involved in a heteroclinic cycle@4# to-
gether with another unstableAm (Bm), and a typical bifur-
cation phenomenon of a heteroclinic cycle is the exchange
stability between the cycles lying on it.

In what follows, the interval ofe that corresponds to the
intersection of the stability regionR(Am) with the line a
5ā will be denoted by (am

1 ,am
2 ), with the assumptionam

2

51 in the case whereR(Am) extends toe51. Analogously,
(bm

1 ,bm
2 ) will represent the intersection of the same line wi

R(Bm). From Fig. 2 it is clear that, for anyā, we have
-
e-
FIG. 3. Stability regionsR(Bm), m55,...,12.
Continuous lines mark the boundary ofR(B5)
and R(B9), broken lines that ofR(B6) and
R(B10), dotted lines that ofR(B7) andR(B11),
and dotted-broken lines that ofR(B8) and
R(B12). Here, differently from Fig. 2, one sym
bol Bm is centered inside the corresponding r
gion.
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2760 57VALTER FRANCESCHINI AND CECILIA VERNIA
am
1 ,am11

1 andam
2 ,am11

2 . Figure 3 clearly shows that per
fectly similar relations hold for thebm

1 ’s and thebm
2 ’s as

well.

IV. STABILITY STATEMENTS

Our major findings can be formalized in twostability
statements: one for period 2, the other for period 4. They a
based on the conjecture that any nonchaotic attractor ofFe,a

N

with D domains, originates, in some way, from a cycle
F0,a

N with the same spatial structure, and which is compo
of r 1s5D elementary waves,r of lengthm ands of length
m11. By identifying the component waves with the cycl
Am or Bm depending on the period, we find that the stabil
of the entire structure is determined by that of the com
nents. Note that, givenN andD, one tern of integers (m,r ,s)
exists such thatrm1s(m11)5N, r 1s5D, r .0, s>0
@i.e., m5@N/D#, s5N2mD, r 5D2s#.

The stability statements are formulated with reference
the parameter regionP[$0.4<e<0.9, 1.6<a<2%. The pa-
rametere is assumed<0.9 because for larger values cycl
may take place whose numbers of domains do not seem
follow any rule.

The stability statement for period 2 is the following: L
SN,D

a be the set of all the cycles ofFe,ā
N of period 2 withD

domains that are stable in the regionP. Denote by (aD
1 ,aD

2 )
the minimum interval ofe that contains all the stability
ranges of the cycles ofSN,D

a . Consider the tern (m,r ,s)
defined as above byN andD. Then (aD

1 ,aD
2 ) is included in

FIG. 4. N527,a51.7 ~a!; a52 ~b!. Number of cycles of period
2 ~dotted lines!, cycles of period 4~broken lines!, and quasiperiodic
traveling waves~continuous lines! as functions ofe for each al-
lowed D, which is shown near the corresponding curves. 53105

initial transients were discarded fore<0.6, and 33105 for largere.
TW’s in the vertical axis label means traveling waves.
f
d

-

o

to

(am
1 ,am

2 ) if s50, in (am
1 ,am11

2 ) if s.0. Furthermore,

aD
1 'am

1 1
s

D
~am11

1 2am
1 !. ~5!

An analogous statement, though a little weaker, holds
period 4: LetSN,D

b be the set of all the cycles and quasipe
odic traveling waves ofFe,ā

N of period 4 withD domains that
are stable inP. Denote by (bD

1 ,bD
2 ) the minimum interval of

e that contains all the stability ranges of the attractors
SN,D

b . Then (bD
1 ,bD

2 ) is entirely or partially included in
(bm

1 ,bm
2 ), with bD

1 .bm
1 , if s50, while it is entirely included

in (bm
1 ,bm11

2 ) if s.0. Moreover, ifSN,D21
b is not empty, the

interval (bD
1 ,bD

2 ) precedes (bD21
2 ,bD21

2 ), which is to say
that bD

1 ,bD21
1 andbD

2 ,bD21
2 .

We have ample data to support these statements. In o
to produce our data we chose several pairs (N,ā), with N
from 15 up to 400, and for each pair we used a grid fore
P@0.3,1# with De50.01. For each point (e,ā) we generated
100 trajectories, starting from randomly chosen initial poin
and determined the corresponding attractors. In particu
we selected the cycles of periods 2 and 4, and the trave
waves of period 4. The data relative to each (N,ā) were
collected and visualized in a picture showing, as a funct
of e and for eachD, the number of the cycles of period 2
that of the cycles of period 4, and that of the traveling wav
We point out that, owing to the fact that, in counting th
attractors, only mistakes of underestimation were possi
the resultant graphs are certainly qualitatively correct. Qu
titatively speaking, they are substantially correct, as is
most cases evident if one adds up the number of the cy

FIG. 5. N542, a51.8. As in Fig. 4.

FIG. 6. N564, a51.7. As in Fig. 4.
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57 2761FEW BASIC STRUCTURES DETERMINE THE BEHAVIOR . . .
and that of the traveling waves, and compares the result
the number of initial conditions.

Some of these pictures, corresponding toN527, 42, 64,
100, 200, and 400, respectively, are shown in Figs. 4
When compared with Figs. 2 and 3, they provide strong e
dence of the validity of the statements.

The stability statements settle some important points:~a!
Only a few wavelengthsm, 5<m<12, are allowed.~b! A
wavelengthm can occur singly or coupled withm11; while
it occurs singly only ifN5mD, it occurs coupled wheneve
N5rm1s(m11), with r 1s5D. ~c! A given m or a given
pair (m,m11) cannot occur everywhere, but only in a~suf-
ficiently! well-defined parameter region, which depends
the tern (m,r ,s) and on the period.~d! Points~a! and~c! are
the consequence of a strict connection with the stability
some simple cycles whose sizes correspond exactly to
allowed wavelengths.

Not only do these results explain some previously o
served facts@2#, they also contain a very important elemen
the possibility of predicting, although approximately, the p
rameter region where a cycle or a quasiperiodic trave
wave with a given spatial structure may be attracting. F
fixed a, the stability intervals (aD

1 ,aD
2 ), as well as the inter-

vals (bD
1 ,bD

2 ), can be defined more or less accurately,
pending on the case, by means of the intervals (am

1 ,am
2 ) and

(bm
1 ,bm

2 ), which are known from Figs. 2 and 3. In fact, co
cerning period 2, eachaD

1 divides the interval (am
1 ,am11

1 )
into parts that are inversely proportional, with a fair degr
of accuracy, tor ands. The result for period 4 is somewha
more approximate: the inverse proportionality of the parts
which bD

1 divides (bm
1 ,bm11

1 ) is only very rough. In any
case, the intervals (aD

1 ,aD
2 ), as well as the intervals

FIG. 7. N5100,a51.6. As in Fig. 4.

FIG. 8. N5200, a51.6. As in Fig. 4, but with 106 discarded
initial transients fore<0.6, and 53105 for largere.
th
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(bD
1 ,bD

2 ), follow one another on thee axis with decreasing
D. Furthermore, in general,aD

1 comes slightly afterbD
2 .

The sequence of Figs. 4–9 provides a fairly good desc
tion of the nonchaotic behavior of lattice~1! in the parameter
region under consideration. It shows, in particular, the p
nomenon of ‘‘pattern selection with suppression of chao
@2,6#. In this regard, let us stress the points that appea
most interest. Cycles and traveling waves of period 4 are
far the most important attractors. Their role in the dynam
is already rather significant for smallN, but it becomes more
and more relevant asN increases. In contrast, the importan
of the cycles of period 2 diminishes rapidly, practically va
ishing asN approaches 100. However, if one considers l
tices of small size, when very few numbersD are allowed
and there are wide intervals ofe in which neither cycles nor
traveling waves of period 4 are present, the prevalent dyn
ics is ruled by cycles of period 2 lying on a heteroclin
cycle.

Our pictures render an account of the behavior of mos
the trajectories we considered. It must be said that the
maining trajectories approach different attractors, includ
heteroclinic cycles and traveling waves of period 8 or larg
normal two- and three-tori, and chaotic attractors.

V. FORMATION OF STABLE STRUCTURES

In order to provide a heuristic justification for the stabili
statements, we made a number of numerical experim
aimed at explaining the mechanisms of formation of sta
cycles and traveling waves. More precisely, we tried to c
firm the following two hypotheses:~a! any attractor ofSN,D

a

(SN,D
b ) is connected, through a more or less complica

sequence of bifurcations, with some cycle ofF0,ā
N of period

2 ~period 4!; and ~b! this cycle can be suitably decompose
into D simpler structures corresponding toD cycles Am
(Bm) if N5mD, to r cyclesAm (Bm) and s5D2r cycles
Am11 (Bm11) if N5rm1s(m11). Let us denote such a
cycle byAN,D

r ,s (BN,D
r ,s ).

In the case of cycles of period 2, both hypotheses seem
hold for almost all choices of initial conditions and param
eters. In fact, in all but one of the 15 cases we examined,
were able to connect the considered cycle ofSN,D

a with a
cycleAN,D

r ,s .
Regarding cycles of period 4, things are more comp

cated and cannot be defined as in the case of period 2.
parameter values that are not too large~roughly for a<1.8

FIG. 9. N5400,a51.6. As in Fig. 8.
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2762 57VALTER FRANCESCHINI AND CECILIA VERNIA
and eD
1 <0.5!, there is numerical evidence that almost

cycles of SN,D
b can be continued backwards up toe50,

where they assume the form of aBN,D
r ,s . For larger paramete

values, it is practically impossible in most cases to follow t
cycle up toe50. When the attempt is successful, the stru
ture of the cycle ate50 turns out to be more complex tha
that of aBN,D

r ,s . In any case, this can again be seen a
combination ofD simpler structures corresponding to cycl
of form ~3! which are only in part identifiable with cyclesBm
or Bm11 .

The possibility of connecting a traveling wave with
cycleBN,D

r ,s is subordinate to the possibility of explaining th
appearance of the traveling wave through a bifurcation fr
some stable cycle ofFe, ā

N . In this regard, our experiment
show that a mechanism sometimes occurs which fulfills
former possibility.

The mechanism is as follows: Ase increases from zero
the continuation of aBN,D

r ,s acquires stability, and then it be
comes involved as a node in a phase-locked torus wit
rotation numberw50. The phase-locked torus is formed b
the unstable manifold of a saddle that joins the node. T
torus is not ‘‘visible’’ because the attractor is the node. Ie
increases again, the node may disappear by collapsing
the saddle. When this happens, it makes the torus ap
with w very close to zero. Becausew remains very small as
e is increased further, a traveling wave has occurred.

Such a mechanism for the formation of a traveling wa
was carefully checked in a few cases, for instance, forN
545, D56, anda51.60 andN564, D58, anda51.69. It
must be said, however, that in the great majority of cases
appearance of a traveling wave is not directly related to
disappearance~or the loss of stability! of a stable cycle. In
our opinion, a connection with a cycle ofF0,ā

N , perhaps
never stable, always exists, but it is numerically undete
able.

VI. CONCLUSION

The results of this paper concern the behavior o
coupled map lattice~1! for high nonlinearity and medium
s
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t-

a

and large coupling. For such parameter values the dynam
is largely governed by cycles and traveling waves of perio
and, in lattices of small sizeN, by cycles of period 2 as well
We have investigated these attractors and have summa
our findings in two stability statements.

In particular, we have found that, regardless ofN, the
stability of a spatial structure~cycle or traveling wave! is
associated with that of a few basic cyclesAm or Bm of small
sizem. Such an association is based on the decompositio
the structure in terms of elementary waves of sizem andm
11. By identifying these waves with theAm’s or Bm’s, it is
possible, thanks to the fact that their stability regions
~numerically! known, to deduce approximately where a cyc
or traveling wave with a given spatial structure may be
tracting.

In addition to this, we have demonstrated that almost
the cycles of period 2 and also, for suitable parameter val
most of the cycles of period 4, originate from cycles of t
uncoupled lattice, which are composed precisely ofr blocks
Am ~or Bm! ands blocksAm11 ~or Bm11!. Furthermore, in
some cases a traveling wave is also directly connected w
similarly structured cycle ofF0,ā

N . This connection of both
cycles and traveling waves with the cycles of the lattice
e50 and with the basic cyclesAm andBm seems very im-
portant. On the one hand, in fact, it provides a justificati
for the stability statements; on the other hand, it sugges
possible starting point for a theoretical approach aimed
rigorous results.
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